3.777 \(\int \frac {x^3}{(a+b x^2)^2 (c+d x^2)^{5/2}} \, dx\)

Optimal. Leaf size=170 \[ \frac {a}{2 b \left (a+b x^2\right ) \left (c+d x^2\right )^{3/2} (b c-a d)}+\frac {3 a d+2 b c}{2 \sqrt {c+d x^2} (b c-a d)^3}+\frac {3 a d+2 b c}{6 b \left (c+d x^2\right )^{3/2} (b c-a d)^2}-\frac {\sqrt {b} (3 a d+2 b c) \tanh ^{-1}\left (\frac {\sqrt {b} \sqrt {c+d x^2}}{\sqrt {b c-a d}}\right )}{2 (b c-a d)^{7/2}} \]

[Out]

1/6*(3*a*d+2*b*c)/b/(-a*d+b*c)^2/(d*x^2+c)^(3/2)+1/2*a/b/(-a*d+b*c)/(b*x^2+a)/(d*x^2+c)^(3/2)-1/2*(3*a*d+2*b*c
)*arctanh(b^(1/2)*(d*x^2+c)^(1/2)/(-a*d+b*c)^(1/2))*b^(1/2)/(-a*d+b*c)^(7/2)+1/2*(3*a*d+2*b*c)/(-a*d+b*c)^3/(d
*x^2+c)^(1/2)

________________________________________________________________________________________

Rubi [A]  time = 0.16, antiderivative size = 170, normalized size of antiderivative = 1.00, number of steps used = 6, number of rules used = 5, integrand size = 24, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.208, Rules used = {446, 78, 51, 63, 208} \[ \frac {a}{2 b \left (a+b x^2\right ) \left (c+d x^2\right )^{3/2} (b c-a d)}+\frac {3 a d+2 b c}{2 \sqrt {c+d x^2} (b c-a d)^3}+\frac {3 a d+2 b c}{6 b \left (c+d x^2\right )^{3/2} (b c-a d)^2}-\frac {\sqrt {b} (3 a d+2 b c) \tanh ^{-1}\left (\frac {\sqrt {b} \sqrt {c+d x^2}}{\sqrt {b c-a d}}\right )}{2 (b c-a d)^{7/2}} \]

Antiderivative was successfully verified.

[In]

Int[x^3/((a + b*x^2)^2*(c + d*x^2)^(5/2)),x]

[Out]

(2*b*c + 3*a*d)/(6*b*(b*c - a*d)^2*(c + d*x^2)^(3/2)) + a/(2*b*(b*c - a*d)*(a + b*x^2)*(c + d*x^2)^(3/2)) + (2
*b*c + 3*a*d)/(2*(b*c - a*d)^3*Sqrt[c + d*x^2]) - (Sqrt[b]*(2*b*c + 3*a*d)*ArcTanh[(Sqrt[b]*Sqrt[c + d*x^2])/S
qrt[b*c - a*d]])/(2*(b*c - a*d)^(7/2))

Rule 51

Int[((a_.) + (b_.)*(x_))^(m_)*((c_.) + (d_.)*(x_))^(n_), x_Symbol] :> Simp[((a + b*x)^(m + 1)*(c + d*x)^(n + 1
))/((b*c - a*d)*(m + 1)), x] - Dist[(d*(m + n + 2))/((b*c - a*d)*(m + 1)), Int[(a + b*x)^(m + 1)*(c + d*x)^n,
x], x] /; FreeQ[{a, b, c, d, n}, x] && NeQ[b*c - a*d, 0] && LtQ[m, -1] &&  !(LtQ[n, -1] && (EqQ[a, 0] || (NeQ[
c, 0] && LtQ[m - n, 0] && IntegerQ[n]))) && IntLinearQ[a, b, c, d, m, n, x]

Rule 63

Int[((a_.) + (b_.)*(x_))^(m_)*((c_.) + (d_.)*(x_))^(n_), x_Symbol] :> With[{p = Denominator[m]}, Dist[p/b, Sub
st[Int[x^(p*(m + 1) - 1)*(c - (a*d)/b + (d*x^p)/b)^n, x], x, (a + b*x)^(1/p)], x]] /; FreeQ[{a, b, c, d}, x] &
& NeQ[b*c - a*d, 0] && LtQ[-1, m, 0] && LeQ[-1, n, 0] && LeQ[Denominator[n], Denominator[m]] && IntLinearQ[a,
b, c, d, m, n, x]

Rule 78

Int[((a_.) + (b_.)*(x_))*((c_.) + (d_.)*(x_))^(n_.)*((e_.) + (f_.)*(x_))^(p_.), x_Symbol] :> -Simp[((b*e - a*f
)*(c + d*x)^(n + 1)*(e + f*x)^(p + 1))/(f*(p + 1)*(c*f - d*e)), x] - Dist[(a*d*f*(n + p + 2) - b*(d*e*(n + 1)
+ c*f*(p + 1)))/(f*(p + 1)*(c*f - d*e)), Int[(c + d*x)^n*(e + f*x)^(p + 1), x], x] /; FreeQ[{a, b, c, d, e, f,
 n}, x] && LtQ[p, -1] && ( !LtQ[n, -1] || IntegerQ[p] ||  !(IntegerQ[n] ||  !(EqQ[e, 0] ||  !(EqQ[c, 0] || LtQ
[p, n]))))

Rule 208

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(Rt[-(a/b), 2]*ArcTanh[x/Rt[-(a/b), 2]])/a, x] /; FreeQ[{a,
b}, x] && NegQ[a/b]

Rule 446

Int[(x_)^(m_.)*((a_) + (b_.)*(x_)^(n_))^(p_.)*((c_) + (d_.)*(x_)^(n_))^(q_.), x_Symbol] :> Dist[1/n, Subst[Int
[x^(Simplify[(m + 1)/n] - 1)*(a + b*x)^p*(c + d*x)^q, x], x, x^n], x] /; FreeQ[{a, b, c, d, m, n, p, q}, x] &&
 NeQ[b*c - a*d, 0] && IntegerQ[Simplify[(m + 1)/n]]

Rubi steps

\begin {align*} \int \frac {x^3}{\left (a+b x^2\right )^2 \left (c+d x^2\right )^{5/2}} \, dx &=\frac {1}{2} \operatorname {Subst}\left (\int \frac {x}{(a+b x)^2 (c+d x)^{5/2}} \, dx,x,x^2\right )\\ &=\frac {a}{2 b (b c-a d) \left (a+b x^2\right ) \left (c+d x^2\right )^{3/2}}+\frac {(2 b c+3 a d) \operatorname {Subst}\left (\int \frac {1}{(a+b x) (c+d x)^{5/2}} \, dx,x,x^2\right )}{4 b (b c-a d)}\\ &=\frac {2 b c+3 a d}{6 b (b c-a d)^2 \left (c+d x^2\right )^{3/2}}+\frac {a}{2 b (b c-a d) \left (a+b x^2\right ) \left (c+d x^2\right )^{3/2}}+\frac {(2 b c+3 a d) \operatorname {Subst}\left (\int \frac {1}{(a+b x) (c+d x)^{3/2}} \, dx,x,x^2\right )}{4 (b c-a d)^2}\\ &=\frac {2 b c+3 a d}{6 b (b c-a d)^2 \left (c+d x^2\right )^{3/2}}+\frac {a}{2 b (b c-a d) \left (a+b x^2\right ) \left (c+d x^2\right )^{3/2}}+\frac {2 b c+3 a d}{2 (b c-a d)^3 \sqrt {c+d x^2}}+\frac {(b (2 b c+3 a d)) \operatorname {Subst}\left (\int \frac {1}{(a+b x) \sqrt {c+d x}} \, dx,x,x^2\right )}{4 (b c-a d)^3}\\ &=\frac {2 b c+3 a d}{6 b (b c-a d)^2 \left (c+d x^2\right )^{3/2}}+\frac {a}{2 b (b c-a d) \left (a+b x^2\right ) \left (c+d x^2\right )^{3/2}}+\frac {2 b c+3 a d}{2 (b c-a d)^3 \sqrt {c+d x^2}}+\frac {(b (2 b c+3 a d)) \operatorname {Subst}\left (\int \frac {1}{a-\frac {b c}{d}+\frac {b x^2}{d}} \, dx,x,\sqrt {c+d x^2}\right )}{2 d (b c-a d)^3}\\ &=\frac {2 b c+3 a d}{6 b (b c-a d)^2 \left (c+d x^2\right )^{3/2}}+\frac {a}{2 b (b c-a d) \left (a+b x^2\right ) \left (c+d x^2\right )^{3/2}}+\frac {2 b c+3 a d}{2 (b c-a d)^3 \sqrt {c+d x^2}}-\frac {\sqrt {b} (2 b c+3 a d) \tanh ^{-1}\left (\frac {\sqrt {b} \sqrt {c+d x^2}}{\sqrt {b c-a d}}\right )}{2 (b c-a d)^{7/2}}\\ \end {align*}

________________________________________________________________________________________

Mathematica [C]  time = 0.03, size = 93, normalized size = 0.55 \[ \frac {\left (a+b x^2\right ) (3 a d+2 b c) \, _2F_1\left (-\frac {3}{2},1;-\frac {1}{2};\frac {b \left (d x^2+c\right )}{b c-a d}\right )+3 a (b c-a d)}{6 b \left (a+b x^2\right ) \left (c+d x^2\right )^{3/2} (b c-a d)^2} \]

Antiderivative was successfully verified.

[In]

Integrate[x^3/((a + b*x^2)^2*(c + d*x^2)^(5/2)),x]

[Out]

(3*a*(b*c - a*d) + (2*b*c + 3*a*d)*(a + b*x^2)*Hypergeometric2F1[-3/2, 1, -1/2, (b*(c + d*x^2))/(b*c - a*d)])/
(6*b*(b*c - a*d)^2*(a + b*x^2)*(c + d*x^2)^(3/2))

________________________________________________________________________________________

fricas [B]  time = 1.09, size = 993, normalized size = 5.84 \[ \left [-\frac {3 \, {\left ({\left (2 \, b^{2} c d^{2} + 3 \, a b d^{3}\right )} x^{6} + 2 \, a b c^{3} + 3 \, a^{2} c^{2} d + {\left (4 \, b^{2} c^{2} d + 8 \, a b c d^{2} + 3 \, a^{2} d^{3}\right )} x^{4} + {\left (2 \, b^{2} c^{3} + 7 \, a b c^{2} d + 6 \, a^{2} c d^{2}\right )} x^{2}\right )} \sqrt {\frac {b}{b c - a d}} \log \left (\frac {b^{2} d^{2} x^{4} + 8 \, b^{2} c^{2} - 8 \, a b c d + a^{2} d^{2} + 2 \, {\left (4 \, b^{2} c d - 3 \, a b d^{2}\right )} x^{2} + 4 \, {\left (2 \, b^{2} c^{2} - 3 \, a b c d + a^{2} d^{2} + {\left (b^{2} c d - a b d^{2}\right )} x^{2}\right )} \sqrt {d x^{2} + c} \sqrt {\frac {b}{b c - a d}}}{b^{2} x^{4} + 2 \, a b x^{2} + a^{2}}\right ) - 4 \, {\left (3 \, {\left (2 \, b^{2} c d + 3 \, a b d^{2}\right )} x^{4} + 11 \, a b c^{2} + 4 \, a^{2} c d + 2 \, {\left (4 \, b^{2} c^{2} + 8 \, a b c d + 3 \, a^{2} d^{2}\right )} x^{2}\right )} \sqrt {d x^{2} + c}}{24 \, {\left (a b^{3} c^{5} - 3 \, a^{2} b^{2} c^{4} d + 3 \, a^{3} b c^{3} d^{2} - a^{4} c^{2} d^{3} + {\left (b^{4} c^{3} d^{2} - 3 \, a b^{3} c^{2} d^{3} + 3 \, a^{2} b^{2} c d^{4} - a^{3} b d^{5}\right )} x^{6} + {\left (2 \, b^{4} c^{4} d - 5 \, a b^{3} c^{3} d^{2} + 3 \, a^{2} b^{2} c^{2} d^{3} + a^{3} b c d^{4} - a^{4} d^{5}\right )} x^{4} + {\left (b^{4} c^{5} - a b^{3} c^{4} d - 3 \, a^{2} b^{2} c^{3} d^{2} + 5 \, a^{3} b c^{2} d^{3} - 2 \, a^{4} c d^{4}\right )} x^{2}\right )}}, \frac {3 \, {\left ({\left (2 \, b^{2} c d^{2} + 3 \, a b d^{3}\right )} x^{6} + 2 \, a b c^{3} + 3 \, a^{2} c^{2} d + {\left (4 \, b^{2} c^{2} d + 8 \, a b c d^{2} + 3 \, a^{2} d^{3}\right )} x^{4} + {\left (2 \, b^{2} c^{3} + 7 \, a b c^{2} d + 6 \, a^{2} c d^{2}\right )} x^{2}\right )} \sqrt {-\frac {b}{b c - a d}} \arctan \left (\frac {{\left (b d x^{2} + 2 \, b c - a d\right )} \sqrt {d x^{2} + c} \sqrt {-\frac {b}{b c - a d}}}{2 \, {\left (b d x^{2} + b c\right )}}\right ) + 2 \, {\left (3 \, {\left (2 \, b^{2} c d + 3 \, a b d^{2}\right )} x^{4} + 11 \, a b c^{2} + 4 \, a^{2} c d + 2 \, {\left (4 \, b^{2} c^{2} + 8 \, a b c d + 3 \, a^{2} d^{2}\right )} x^{2}\right )} \sqrt {d x^{2} + c}}{12 \, {\left (a b^{3} c^{5} - 3 \, a^{2} b^{2} c^{4} d + 3 \, a^{3} b c^{3} d^{2} - a^{4} c^{2} d^{3} + {\left (b^{4} c^{3} d^{2} - 3 \, a b^{3} c^{2} d^{3} + 3 \, a^{2} b^{2} c d^{4} - a^{3} b d^{5}\right )} x^{6} + {\left (2 \, b^{4} c^{4} d - 5 \, a b^{3} c^{3} d^{2} + 3 \, a^{2} b^{2} c^{2} d^{3} + a^{3} b c d^{4} - a^{4} d^{5}\right )} x^{4} + {\left (b^{4} c^{5} - a b^{3} c^{4} d - 3 \, a^{2} b^{2} c^{3} d^{2} + 5 \, a^{3} b c^{2} d^{3} - 2 \, a^{4} c d^{4}\right )} x^{2}\right )}}\right ] \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(x^3/(b*x^2+a)^2/(d*x^2+c)^(5/2),x, algorithm="fricas")

[Out]

[-1/24*(3*((2*b^2*c*d^2 + 3*a*b*d^3)*x^6 + 2*a*b*c^3 + 3*a^2*c^2*d + (4*b^2*c^2*d + 8*a*b*c*d^2 + 3*a^2*d^3)*x
^4 + (2*b^2*c^3 + 7*a*b*c^2*d + 6*a^2*c*d^2)*x^2)*sqrt(b/(b*c - a*d))*log((b^2*d^2*x^4 + 8*b^2*c^2 - 8*a*b*c*d
 + a^2*d^2 + 2*(4*b^2*c*d - 3*a*b*d^2)*x^2 + 4*(2*b^2*c^2 - 3*a*b*c*d + a^2*d^2 + (b^2*c*d - a*b*d^2)*x^2)*sqr
t(d*x^2 + c)*sqrt(b/(b*c - a*d)))/(b^2*x^4 + 2*a*b*x^2 + a^2)) - 4*(3*(2*b^2*c*d + 3*a*b*d^2)*x^4 + 11*a*b*c^2
 + 4*a^2*c*d + 2*(4*b^2*c^2 + 8*a*b*c*d + 3*a^2*d^2)*x^2)*sqrt(d*x^2 + c))/(a*b^3*c^5 - 3*a^2*b^2*c^4*d + 3*a^
3*b*c^3*d^2 - a^4*c^2*d^3 + (b^4*c^3*d^2 - 3*a*b^3*c^2*d^3 + 3*a^2*b^2*c*d^4 - a^3*b*d^5)*x^6 + (2*b^4*c^4*d -
 5*a*b^3*c^3*d^2 + 3*a^2*b^2*c^2*d^3 + a^3*b*c*d^4 - a^4*d^5)*x^4 + (b^4*c^5 - a*b^3*c^4*d - 3*a^2*b^2*c^3*d^2
 + 5*a^3*b*c^2*d^3 - 2*a^4*c*d^4)*x^2), 1/12*(3*((2*b^2*c*d^2 + 3*a*b*d^3)*x^6 + 2*a*b*c^3 + 3*a^2*c^2*d + (4*
b^2*c^2*d + 8*a*b*c*d^2 + 3*a^2*d^3)*x^4 + (2*b^2*c^3 + 7*a*b*c^2*d + 6*a^2*c*d^2)*x^2)*sqrt(-b/(b*c - a*d))*a
rctan(1/2*(b*d*x^2 + 2*b*c - a*d)*sqrt(d*x^2 + c)*sqrt(-b/(b*c - a*d))/(b*d*x^2 + b*c)) + 2*(3*(2*b^2*c*d + 3*
a*b*d^2)*x^4 + 11*a*b*c^2 + 4*a^2*c*d + 2*(4*b^2*c^2 + 8*a*b*c*d + 3*a^2*d^2)*x^2)*sqrt(d*x^2 + c))/(a*b^3*c^5
 - 3*a^2*b^2*c^4*d + 3*a^3*b*c^3*d^2 - a^4*c^2*d^3 + (b^4*c^3*d^2 - 3*a*b^3*c^2*d^3 + 3*a^2*b^2*c*d^4 - a^3*b*
d^5)*x^6 + (2*b^4*c^4*d - 5*a*b^3*c^3*d^2 + 3*a^2*b^2*c^2*d^3 + a^3*b*c*d^4 - a^4*d^5)*x^4 + (b^4*c^5 - a*b^3*
c^4*d - 3*a^2*b^2*c^3*d^2 + 5*a^3*b*c^2*d^3 - 2*a^4*c*d^4)*x^2)]

________________________________________________________________________________________

giac [A]  time = 0.36, size = 260, normalized size = 1.53 \[ \frac {\frac {3 \, \sqrt {d x^{2} + c} a b d^{2}}{{\left (b^{3} c^{3} - 3 \, a b^{2} c^{2} d + 3 \, a^{2} b c d^{2} - a^{3} d^{3}\right )} {\left ({\left (d x^{2} + c\right )} b - b c + a d\right )}} + \frac {3 \, {\left (2 \, b^{2} c d + 3 \, a b d^{2}\right )} \arctan \left (\frac {\sqrt {d x^{2} + c} b}{\sqrt {-b^{2} c + a b d}}\right )}{{\left (b^{3} c^{3} - 3 \, a b^{2} c^{2} d + 3 \, a^{2} b c d^{2} - a^{3} d^{3}\right )} \sqrt {-b^{2} c + a b d}} + \frac {2 \, {\left (3 \, {\left (d x^{2} + c\right )} b c d + b c^{2} d + 3 \, {\left (d x^{2} + c\right )} a d^{2} - a c d^{2}\right )}}{{\left (b^{3} c^{3} - 3 \, a b^{2} c^{2} d + 3 \, a^{2} b c d^{2} - a^{3} d^{3}\right )} {\left (d x^{2} + c\right )}^{\frac {3}{2}}}}{6 \, d} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(x^3/(b*x^2+a)^2/(d*x^2+c)^(5/2),x, algorithm="giac")

[Out]

1/6*(3*sqrt(d*x^2 + c)*a*b*d^2/((b^3*c^3 - 3*a*b^2*c^2*d + 3*a^2*b*c*d^2 - a^3*d^3)*((d*x^2 + c)*b - b*c + a*d
)) + 3*(2*b^2*c*d + 3*a*b*d^2)*arctan(sqrt(d*x^2 + c)*b/sqrt(-b^2*c + a*b*d))/((b^3*c^3 - 3*a*b^2*c^2*d + 3*a^
2*b*c*d^2 - a^3*d^3)*sqrt(-b^2*c + a*b*d)) + 2*(3*(d*x^2 + c)*b*c*d + b*c^2*d + 3*(d*x^2 + c)*a*d^2 - a*c*d^2)
/((b^3*c^3 - 3*a*b^2*c^2*d + 3*a^2*b*c*d^2 - a^3*d^3)*(d*x^2 + c)^(3/2)))/d

________________________________________________________________________________________

maple [B]  time = 0.02, size = 2400, normalized size = 14.12 \[ \text {result too large to display} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(x^3/(b*x^2+a)^2/(d*x^2+c)^(5/2),x)

[Out]

5/12*a/b*d/(a*d-b*c)^2/((x+(-a*b)^(1/2)/b)^2*d-2*(-a*b)^(1/2)*(x+(-a*b)^(1/2)/b)/b*d-(a*d-b*c)/b)^(3/2)+5/4*a*
d/(a*d-b*c)^3/(-(a*d-b*c)/b)^(1/2)*ln((-2*(-a*b)^(1/2)*(x+(-a*b)^(1/2)/b)/b*d-2*(a*d-b*c)/b+2*(-(a*d-b*c)/b)^(
1/2)*((x+(-a*b)^(1/2)/b)^2*d-2*(-a*b)^(1/2)*(x+(-a*b)^(1/2)/b)/b*d-(a*d-b*c)/b)^(1/2))/(x+(-a*b)^(1/2)/b))-5/4
*a*d/(a*d-b*c)^3/((x-(-a*b)^(1/2)/b)^2*d+2*(-a*b)^(1/2)*(x-(-a*b)^(1/2)/b)/b*d-(a*d-b*c)/b)^(1/2)-5/4*a*d/(a*d
-b*c)^3/((x+(-a*b)^(1/2)/b)^2*d-2*(-a*b)^(1/2)*(x+(-a*b)^(1/2)/b)/b*d-(a*d-b*c)/b)^(1/2)+1/2/(a*d-b*c)^2/((x-(
-a*b)^(1/2)/b)^2*d+2*(-a*b)^(1/2)*(x-(-a*b)^(1/2)/b)/b*d-(a*d-b*c)/b)^(1/2)+1/2/(a*d-b*c)^2/((x+(-a*b)^(1/2)/b
)^2*d-2*(-a*b)^(1/2)*(x+(-a*b)^(1/2)/b)/b*d-(a*d-b*c)/b)^(1/2)+5/4*(-a*b)^(1/2)/b*a*d^2/(a*d-b*c)^3/c/((x-(-a*
b)^(1/2)/b)^2*d+2*(-a*b)^(1/2)*(x-(-a*b)^(1/2)/b)/b*d-(a*d-b*c)/b)^(1/2)*x+5/12*(-a*b)^(1/2)/b^2*a*d^2/(a*d-b*
c)^2/c/((x+(-a*b)^(1/2)/b)^2*d-2*(-a*b)^(1/2)*(x+(-a*b)^(1/2)/b)/b*d-(a*d-b*c)/b)^(3/2)*x+5/6*(-a*b)^(1/2)/b^2
*a*d^2/(a*d-b*c)^2/c^2/((x+(-a*b)^(1/2)/b)^2*d-2*(-a*b)^(1/2)*(x+(-a*b)^(1/2)/b)/b*d-(a*d-b*c)/b)^(1/2)*x-5/4*
(-a*b)^(1/2)/b*a*d^2/(a*d-b*c)^3/c/((x+(-a*b)^(1/2)/b)^2*d-2*(-a*b)^(1/2)*(x+(-a*b)^(1/2)/b)/b*d-(a*d-b*c)/b)^
(1/2)*x-5/12*(-a*b)^(1/2)/b^2*a*d^2/(a*d-b*c)^2/c/((x-(-a*b)^(1/2)/b)^2*d+2*(-a*b)^(1/2)*(x-(-a*b)^(1/2)/b)/b*
d-(a*d-b*c)/b)^(3/2)*x-5/6*(-a*b)^(1/2)/b^2*a*d^2/(a*d-b*c)^2/c^2/((x-(-a*b)^(1/2)/b)^2*d+2*(-a*b)^(1/2)*(x-(-
a*b)^(1/2)/b)/b*d-(a*d-b*c)/b)^(1/2)*x+5/4*a*d/(a*d-b*c)^3/(-(a*d-b*c)/b)^(1/2)*ln((2*(-a*b)^(1/2)*(x-(-a*b)^(
1/2)/b)/b*d-2*(a*d-b*c)/b+2*(-(a*d-b*c)/b)^(1/2)*((x-(-a*b)^(1/2)/b)^2*d+2*(-a*b)^(1/2)*(x-(-a*b)^(1/2)/b)/b*d
-(a*d-b*c)/b)^(1/2))/(x-(-a*b)^(1/2)/b))-1/6/b/(a*d-b*c)/((x-(-a*b)^(1/2)/b)^2*d+2*(-a*b)^(1/2)*(x-(-a*b)^(1/2
)/b)/b*d-(a*d-b*c)/b)^(3/2)-1/2/(a*d-b*c)^2/(-(a*d-b*c)/b)^(1/2)*ln((2*(-a*b)^(1/2)*(x-(-a*b)^(1/2)/b)/b*d-2*(
a*d-b*c)/b+2*(-(a*d-b*c)/b)^(1/2)*((x-(-a*b)^(1/2)/b)^2*d+2*(-a*b)^(1/2)*(x-(-a*b)^(1/2)/b)/b*d-(a*d-b*c)/b)^(
1/2))/(x-(-a*b)^(1/2)/b))-1/6/b/(a*d-b*c)/((x+(-a*b)^(1/2)/b)^2*d-2*(-a*b)^(1/2)*(x+(-a*b)^(1/2)/b)/b*d-(a*d-b
*c)/b)^(3/2)-1/2/(a*d-b*c)^2/(-(a*d-b*c)/b)^(1/2)*ln((-2*(-a*b)^(1/2)*(x+(-a*b)^(1/2)/b)/b*d-2*(a*d-b*c)/b+2*(
-(a*d-b*c)/b)^(1/2)*((x+(-a*b)^(1/2)/b)^2*d-2*(-a*b)^(1/2)*(x+(-a*b)^(1/2)/b)/b*d-(a*d-b*c)/b)^(1/2))/(x+(-a*b
)^(1/2)/b))-1/2/b^2*(-a*b)^(1/2)*d/(a*d-b*c)/c/((x+(-a*b)^(1/2)/b)^2*d-2*(-a*b)^(1/2)*(x+(-a*b)^(1/2)/b)/b*d-(
a*d-b*c)/b)^(3/2)*x-1/b^2*(-a*b)^(1/2)*d/(a*d-b*c)/c^2/((x+(-a*b)^(1/2)/b)^2*d-2*(-a*b)^(1/2)*(x+(-a*b)^(1/2)/
b)/b*d-(a*d-b*c)/b)^(1/2)*x+1/2/b/(a*d-b*c)^2*(-a*b)^(1/2)/c/((x+(-a*b)^(1/2)/b)^2*d-2*(-a*b)^(1/2)*(x+(-a*b)^
(1/2)/b)/b*d-(a*d-b*c)/b)^(1/2)*d*x+1/2*(-a*b)^(1/2)/b^2*d/(a*d-b*c)/c/((x-(-a*b)^(1/2)/b)^2*d+2*(-a*b)^(1/2)*
(x-(-a*b)^(1/2)/b)/b*d-(a*d-b*c)/b)^(3/2)*x+(-a*b)^(1/2)/b^2*d/(a*d-b*c)/c^2/((x-(-a*b)^(1/2)/b)^2*d+2*(-a*b)^
(1/2)*(x-(-a*b)^(1/2)/b)/b*d-(a*d-b*c)/b)^(1/2)*x-1/2/b/(a*d-b*c)^2*(-a*b)^(1/2)/c/((x-(-a*b)^(1/2)/b)^2*d+2*(
-a*b)^(1/2)*(x-(-a*b)^(1/2)/b)/b*d-(a*d-b*c)/b)^(1/2)*d*x+1/4*(-a*b)^(1/2)/b^2/(a*d-b*c)/(x-(-a*b)^(1/2)/b)/((
x-(-a*b)^(1/2)/b)^2*d+2*(-a*b)^(1/2)*(x-(-a*b)^(1/2)/b)/b*d-(a*d-b*c)/b)^(3/2)-1/4*(-a*b)^(1/2)/b^2/(a*d-b*c)/
(x+(-a*b)^(1/2)/b)/((x+(-a*b)^(1/2)/b)^2*d-2*(-a*b)^(1/2)*(x+(-a*b)^(1/2)/b)/b*d-(a*d-b*c)/b)^(3/2)+5/12*a/b*d
/(a*d-b*c)^2/((x-(-a*b)^(1/2)/b)^2*d+2*(-a*b)^(1/2)*(x-(-a*b)^(1/2)/b)/b*d-(a*d-b*c)/b)^(3/2)

________________________________________________________________________________________

maxima [F(-2)]  time = 0.00, size = 0, normalized size = 0.00 \[ \text {Exception raised: ValueError} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(x^3/(b*x^2+a)^2/(d*x^2+c)^(5/2),x, algorithm="maxima")

[Out]

Exception raised: ValueError >> Computation failed since Maxima requested additional constraints; using the 'a
ssume' command before evaluation *may* help (example of legal syntax is 'assume(a*d-b*c>0)', see `assume?` for
 more details)Is a*d-b*c positive or negative?

________________________________________________________________________________________

mupad [B]  time = 1.43, size = 193, normalized size = 1.14 \[ -\frac {\frac {\left (d\,x^2+c\right )\,\left (3\,a\,d+2\,b\,c\right )}{3\,{\left (a\,d-b\,c\right )}^2}-\frac {c}{3\,\left (a\,d-b\,c\right )}+\frac {b\,{\left (d\,x^2+c\right )}^2\,\left (3\,a\,d+2\,b\,c\right )}{2\,{\left (a\,d-b\,c\right )}^3}}{b\,{\left (d\,x^2+c\right )}^{5/2}+{\left (d\,x^2+c\right )}^{3/2}\,\left (a\,d-b\,c\right )}-\frac {\sqrt {b}\,\mathrm {atan}\left (\frac {\sqrt {b}\,\sqrt {d\,x^2+c}\,\left (a^3\,d^3-3\,a^2\,b\,c\,d^2+3\,a\,b^2\,c^2\,d-b^3\,c^3\right )}{{\left (a\,d-b\,c\right )}^{7/2}}\right )\,\left (3\,a\,d+2\,b\,c\right )}{2\,{\left (a\,d-b\,c\right )}^{7/2}} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(x^3/((a + b*x^2)^2*(c + d*x^2)^(5/2)),x)

[Out]

- (((c + d*x^2)*(3*a*d + 2*b*c))/(3*(a*d - b*c)^2) - c/(3*(a*d - b*c)) + (b*(c + d*x^2)^2*(3*a*d + 2*b*c))/(2*
(a*d - b*c)^3))/(b*(c + d*x^2)^(5/2) + (c + d*x^2)^(3/2)*(a*d - b*c)) - (b^(1/2)*atan((b^(1/2)*(c + d*x^2)^(1/
2)*(a^3*d^3 - b^3*c^3 + 3*a*b^2*c^2*d - 3*a^2*b*c*d^2))/(a*d - b*c)^(7/2))*(3*a*d + 2*b*c))/(2*(a*d - b*c)^(7/
2))

________________________________________________________________________________________

sympy [F(-1)]  time = 0.00, size = 0, normalized size = 0.00 \[ \text {Timed out} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(x**3/(b*x**2+a)**2/(d*x**2+c)**(5/2),x)

[Out]

Timed out

________________________________________________________________________________________